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ABSTRACT: 

 

We first use the multi-robot SLAM framework DiSCo-SLAM to evaluate the performance of cooperative SLAM based on the 

complicated dataset in urban scenes. Besides, we perform comparisons of single-robot SLAM and multi-robot SLAM to explore 

whether the cooperative framework can noticeably improve robot localization performance and the influence of inter-robot constraints 

in local pose graph, utilizing an identical dataset generated via the Carla simulator. Our findings indicate that under specific conditions, 

the integration of inter-robot constraints may effectively mitigate drift in local pose estimation. The extent to which inter-robot 

constraints affect the correction of local SLAM is related to various factors, such as the confidence level of the constraints and the 

range of keyframes imposed by the constraint.  

 

1. INTRODUCTION AND RELATED WORK 

1.1 Introduction 

For unknown and unlocatable environments, simultaneous 

localization and mapping (SLAM) (Cadena et al., 2016)is a 

fundamental technology that can help the robot navigate and 

build maps in the environment. Multi-robot has the potential to 

be more effective and efficient than single-robot in some tasks 

such as localization and mapping (Huang et al., 2022; Trusheim 

et al., 2021; Xie et al., 2022). To accurately merge the map, the 

main goal of the multi-robot SLAM is to find the transformation 

between different robots. The key components of this task are 

composed of using perception-derived descriptors to detect the 

inter-loop closure effectively, establishing accurate inter-robot 

measurement constraints, and optimizing the transformation 

from any robot frame to the base frame. Moreover, inter-robot 

constraints in multi-robot cooperative SLAM can also be used in 

local pose optimization to reduce the local drift of the individual 

robot due to the accumulation of errors. More importantly, the 

multi-robot cooperative LiDAR SLAM would lead to 

significantly increased computational load, efficient feature 

extraction and data exchange between robots are important for 

the real time multi-robot SLAM. 

 

1.2 Recent works 

Collaborative Simultaneous Localization and Mapping (C-

SLAM) is a vital component for successful multi-robot 

operations in environments without an external positioning 

system, such as indoors, underground or underwater. In recent 

years, the field of multi-robot SLAM has witnessed significant 

advancements. These recent works highlight the growing body of 

research focused on distributed multi-robot SLAM, with 

particular attention paid to lidar-based systems and cooperative 

strategies. Expanding on multi-robot SLAM, Zhou et al. (2022) 

introduce an online system that merges range measurements 

provided by UWB sensors with lidar data from multiple mobile 

robots. The result is a globally-consistent map comprising 
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individual point cloud maps and trajectory estimations for all 

robots. Huang et al., (2022) proposes a novel framework for 

distributed multi-robot SLAM that employs 3D LiDAR 

observations. Furthermore, Zhong et al., (2022) presents DCL-

SLAM, a fully distributed collaborative LiDAR SLAM 

framework designed for robotic swarms operating in unknown 

environments with minimal information exchange. Wu et al. 

(2022) contributes a map merging method for collaborative lidar-

based SLAM that relies on GPS measurements and an improved 

Iterative Closest Point (ICP) algorithm. In a recent development, 

Lajoie et al. (2023) introduces Swarm-SLAM, an open-source C-

SLAM system that emphasizes scalability, flexibility, 

decentralization, and sparsity—key properties in swarm robotics. 

As these frameworks continue to mature, they hold great promise 

for applications in a wide range of challenging environments. 

 

Detecting inter-robot loop closures to estimate the relative pose 

is a highly effective method for merging the robots' trajectories 

into a common frame, without relying on external positioning 

infrastructure. In addition, compensating for the front-end 

odometry drift is crucial for improving the accuracy of trajectory 

estimates. In a multi-robot SLAM algorithm, particularly in 

distributed multi-robot SLAM with limited communication 

bandwidth, it is crucial to create precise inter-robot measurement 

constraints. While single-robot SLAM often relies on odometry 

measurements for an accurate initial estimate, multi-robot SLAM 

requires deriving inter-robot constraints from perceptual 

information. Feature descriptors are used to find potential data 

association because they are easy to transfer and query among 

different robots.   

 

The real-time multi-robot SLAM framework has been 

successfully implemented by using lightweight feature 

descriptors to detect inter-robot loop closure and distributed 

optimization. Feature descriptors are used to find potential data 

association because they are easy to transfer and query among 

different robots. Vision based methods extract features on images 

and then build Bag of Words (BoW) (Chang et al., 2021; Deutsch 
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et al., 2016). Recent research also extracts point features to scale 

down the data such as transforming the LiDAR point cloud into 

a descriptor and then comparing the similarity of the descriptors. 

Scan Context (Kim & Kim, 2018)encodes egocentric visible 

information as a 2D matrix by projecting the scan onto a plane, 

which is then divided into grid cells according to a specified 

number of sectors and rings. Since scan context is lightweight 

and easy to be searched by KD tree, so it is widely integrated into 

many frameworks. However, this method is not robust enough 

and finds many false loops closure. Dr. Tixiao Shan (Shan et al., 

2021)using image-quality high resolution 3D point clouds to 

obtain an intensity image and encode the ORB feature descriptors 

into a bag-of-words vector. This proposed method is more robust 

and combine the benefit of both camera and lidar-based method. 

Zhong et al. (2022)  integrates LiDAR-Iris(Wang et al., 2020), a 

lightweight global descriptor, to describe laser scans and identify 

loop closures without exchanging extra raw data. This descriptor 

captures the altitude data of each bin, extracts distinctive features 

without any prior training, and remains rotation-invariant without 

requiring brute-force matching.  

 

Although features descriptors are robust in many cases, they are 

unreliable in repeated scenes. Recent works address this issue 

through selectivity in accepting inter-robot loop closure and 

outlier rejection procedure to detect erroneous loop closure. In 

this case, robots only exchange the messages when they meet. 

However, this rendezvous approach relies on the overlap 

timestamp of multi-robots. A widely used outlier rejection 

procedure in multi-robot SLAM named pairwise consistent 

measurement set maximization (PCM) (Mangelson et al., 

2018)checks the consistency of inter-robot measurements, which 

allows us to robustly merge trajectories. After obtaining the inter-

robot measurement constraints, the optimization of the 

constraints is critical for the fuse.  In the commonly adopted 

distributed Gauss-Seidel (DGS) (Choudhary et al., 2016) 

approach, each robot independently optimizes its own graph and 

only takes into account the overlapping constraints with other 

robots. Recently, the work from DiSCo-SLAM (Huang et al., 

2022)adopted a two-stage optimization approach and the initial 

global optimization step solves the transformation among robots. 

Next, the local graph optimization step is performed utilizing the 

local odometry, intra-robot constraints, and inter-robot 

constraints.   

 

1.3 Research gap 

Unfortunately, previous studies mostly were tested on specially 

designed routes and relatively simple environments. Since 

researchers usually lack multi-robot observations, sequences of 

the single robot are always modified into a synthetic multi-robot 

dataset. However, the performance of real multi-robot 

cooperative LiDAR SLAM in complex urban scenes and the 

effectiveness of inter-robot constraints on local pose graph 

optimization still need to be tested.  

 

1.4 Contributions  

• We first use the multi-robot SLAM framework DiSCo-

SLAM proposed in (Huang et al., 2022) to compare the 

performance of the single and cooperative LiDAR SLAM 

based on the same dataset generated using the Carla 

simulator(’Dosovitskiy et al., 2017). 

• We found that inter-robot constraints are transformed to 

intra-pose constraints in local SLAM and the effectiveness 

of inter-robot constraints in improving local SLAM in this 

experiment is limited.  

• We found that the extent to which inter-robot constraints 

affect the correction of local SLAM is related to various 

factors, such as the confidence level of the constraints and 

the range of keyframes imposed by the constraint.  

• To obtain similar positioning accuracy but with a lower 

computational load, we use feature selection in the LiDAR 

odometry part.  

 

2. ALGORITHMS 

2.1 Overview of the architecture of DiSCo-SLAM 

Huang et al., (2022)proposes a distributed multi-robot SLAM 

framework intended for real- time use with 3D LiDAR. Once the 

system receives the LiDAR scan, the local SLAM thread and 

each map fusion thread are activated simultaneously. The multi-

robot SLAM adopts LIO-SAM(Shan et al., 2020) as local SLAM 

framework. In this framework, it will launch the local SLAM 

node to estimate the individual robot pose transformation first 

and then the information of key frame will be sent to the fusion 

node of each robot. The point cloud information of key frames 

includes pose estimation and full scan, which is transferred to the 

map fusion node.  

 

The map fusion node will use the cloud information of key frame 

to publish the lightweight spatial feature descriptor named Scan 

Context(Kim & Kim, 2018). Scan Context messages are 

published by projecting the LiDAR scan onto a 2D plane. The 

resulting 2D scan image is then divided into grid cells according 

to a specified number of sectors Ns and rings Nr. To obtain a ring 

key feature, the value of each grid cell is computed as the 

maximum intensity of all the points captured in the cell. Then, 

for each ring, a ring key feature of dimension Nr is extracted by 

counting the non-zero values of each cell. A ring key KD tree is 

built to search for nearest neighbour search and get a list of 

nearest indices of descriptors. The SC features are shifted along 

the sector axis to ensure rotation invariance. The shifting angle 

also serves as an initial rotation guess for the ICP scan-matching 

process in cases where there is no coordinate transformation 

history available. The Pairwise Consistent Measurement Set 

Maximization (PCM) technique has been introduced to mitigate 

the risk of accepting erroneous loop closures. Such inaccuracies 

may arise from distinct environmental regions that exhibit similar 

appearances or from objects within the environment arranged in 

repetitive patterns.  

 

The most important part of this framework is the two-stage global 

and local optimization. After performing the PCM techniques, 

the accepted inter-robot loop closures are used to optimize the 

transformations from local robots to the global coordinate frame. 

In the global step, the coordinate transformations between robots 

derived form inter-robot loop closures are regarded as 

measurements and use GTSAM (the Georgia Tech Smoothing 

and Mapping library) to optimize the global transformation. 

Separator poses refer to the key poses in multi-robot system that 

are used to establish connections between different robots. Upon 

completing global optimization, the inter-loop closures will be 

converted to virtual intra-robot loop closures. In order to 

calculate the relative poses between the virtual intra-robot loop 

closure, the related poses are multiplied with the inter-robot loop 

closure’s relative transformation. 

 

2.2 Transmission of inter-robot constraints to local SLAM 

The Figure 1 illustrates the transmission between global 

optimization and local SLAM in two-robots situation. The local 

SLAM transfers the LiDAR scan and pose estimation to the map 
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fusion node. After detecting the inter-loop closure and optimizing 

the transformation between different robots, the inter-loop 

constraints are transferred to local pose graph for further 

optimization by establishing global to local coordinate 

transformation. After receiving the virtual intra-robot 

observation, the local SLAM will add the pose constraints 

between related key frame and the local pose graph is optimized. 

The index of related key frame and constraints are derived from 

the inter-loop queues and sent by the map fusion node.   

 

Figure 1. Inter-robot constraints to local SLAM 

 

3. EXPERIMENT 

3.1 Experiment setup 

To test the cooperative LiDAR SLAM based on complex 

datasets, the two-robot dataset with 10 Hz 16-line LiDAR and 

100 Hz raw inertial measurement unit (IMU) data was recorded 

in the Carla simulator and configured for compatibility with 

DiSCo-SLAM. When designing the driving path of two vehicles 

(Figure 2), we let the two vehicles start from different points 

(presented by triangular shape) and each robot ‘s trajectory 

includes intra-robot and inter-robot loop closure. The blue one 

represents the ground truth trajectory of vehicle_0 and the green 

one for the vehicle_1. We used the EVO package (‘Grupp, 2017) 

for the evaluation and comparison of odometry and SLAM.  

 

 
Figure 2. Route design of vehicle_0 and vehicle_1. 

 

3.2 Evaluation method 

To evaluate the cooperative SLAM performance, we use the two-

vehicle dataset to run the multi-robot SLAM and save their 

optimized local pose estimations. The optimized transformation 

from vehicle_1 to vehicle_0 is published by the topic and used to 

merge the map. We use the absolute pose error (APE) w.r.t 

translation part to evaluate the overall consistency of trajectory 

and use Umeyama algorithms(Umeyama, 1991) to transform the 

estimated merged map to the coordinate system of ground truth 

(Figure 3).  The APE and RPE w.r.t translation part is given in 

Table 1. 

Figure 3. APE w.r.t translation part of cooperative SLAM. 

 

 Min Max Mean RMSE 

APE 0.007 4.760 0.850 1.062 

RPE 0.001 1.594 0.007 0.039 

 

Table 1. Absolute pose error (APE) and 

relative pose error (RPE) w.r.t Translation Part(m). 

 

In the second experiment, we divided the two-vehicle dataset into 

two single-vehicle datasets and still run the DiSCo-SLAM for 

each vehicle. Using single-vehicle data will result in no inter loop 

constraints in local pose graph optimization. We perform 

comparisons of pose error between single-robot SLAM and 

multi-robot SLAM (Table 2 and Figure 4) to explore whether 

the cooperative framework can noticeably improve robot 

localization performance and the influence of inter-robot 

constraints in local pose graph.  

 

Setting Min Max Mean RMSE 

Vehicle_0 

(single) 
0.062 2.228 0.352 0.565 

Vehicle_0 

(collaborative) 
0.017 4.996 0.300 0.543 

     

Vehicle_1 

(single) 
0.010 2.139 0.423 0.561 

Vehicle_1 

(collaborative) 
0.013 1.900 0.411 0.538 

 

Table 2. Absolute pose error w.r.t translation part. 
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Figure 4. comparisons of pose estimation between single-robot 

SLAM and multi-robot SLAM 

 

3.3 Performance of cooperative mapping  

In general, cooperative LiDAR SLAM in complex environments 

can achieve similar performance compared to previous studies. 

From Figure 3, we can find good results for collaborative 

mapping and localization in large urban environments, except for 

the start and end parts of some trajectories, which show high 

errors. During the experiment, we found that the effectiveness of 

inter-robot loop detection between robots is not enough (Figure 

4 and Table2). Under the infrequent overlapping between 

trajectories or the inconsistent moving directions in the 

overlapping area, the inter-robot loop detection and the 

cooperative task may fail. 

 

3.4 The influence of inter-robots’ constraint 

In the local phase of collaborative SLAM, a local graph is 

refined, which includes: (1) local odometry, (2) intra-robot 

constrains, and (3) inter-robot constraints relevant to the specific 

robot. In the single SLAM, the constraints for the local pose 

graph optimization contain only the first two. The effect of inter- 

Figure 5. Two types of loop-closures in local SLAM 

 

robot constraints on the result can be found by the control 

variables method. According to the comparison of the 

collaborative and single SLAM (Table 2), the conversion of 

inter-robot constraints to the virtual intra-robot constraints slight 

contributed to the performance of the local SLAM. In order to 

investigate the detailed relationship between the absolute pose 

error (APE) of key frame pose estimation and the two kinds of 

loop-closures, we plotted the absolute pose error of the keyframe 

pose estimation (Figure 5). The difference between the two 

curves reflects the effect of inter-robot constraints. We draw red 

dashed lines perpendicular to the x-axis on keyframes where 

intra-robot loop-closure constraints are present, and green dashed 

lines perpendicular to the x-axis on keyframes where inter-robot 

loop-closure constraints are present.   It can be found that the 

regions with inter-robot constraints are not able to reduce the 

error significantly. However, according to the previous 

researchers' experiments results, it is said that inter-robot 

constraints can significantly reduce the drift of local pose 

estimation when there is sufficient overlap among robots. Under 

that situation, inter-robot constraints can compensate for the 

cumulative drift caused by the absence of intra-robot constraints.  

 

In different situations, the contribution of inter-robot constraints 

to the local pose graph varies. Since the inter-robot constraints, 

which will be converted into virtual intra-robot constraints, are 

based on the estimation of neighbouring robots' poses and the 

coordinate system transformation between robots, the extent to 

which inter-robot constraints affect the correction of local SLAM 

is related to various factors, such as the confidence level of the 

constraints and the range of keyframes imposed by the constraint. 

If the pose estimation of neighbouring robots is inaccurate, this 

will directly affect the accuracy of inter-robot constraints. This 

may lead to map inconsistencies and localization errors. 
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Therefore, accurate pose estimation of neighbouring robots is 

essential for generating reliable inter-robot constraints. At the 

same time, by sharing accurate constraints, multi-robot systems 

can correct each other's localization errors, thereby improving the 

overall SLAM performance of the system.  

 

Inter-robot constraints, when integrated correctly, can potentially 

improve the local accuracy of individual robots compared to 

single-robot SLAM without inter-robot constraints. However, 

this improvement is not guaranteed in every situation and 

depends on various factors. If the inter-robot constraints are 

accurate and reliable, they can help correct errors in individual 

robot's local maps, leading to better local accuracy. On the other 

hand, if the inter-robot constraints contain significant errors or 

outliers, they may introduce inconsistencies and negatively 

impact local SLAM accuracy. Accurate relative pose estimation 

between robots is critical for establishing useful inter-robot 

constraints. If relative pose estimation is unreliable or contains 

significant errors, the local SLAM accuracy may not improve or 

may even worsen. The effectiveness of inter-robot also depends 

on the robots' ability to collaborate effectively. Proper 

coordination, task allocation, and sharing of information among 

robots are essential for leveraging the benefits of inter-robot 

constraints. For example. In previous research experiment, the 

route design and cooperative mechanisms between multiple 

robots can make use of the more accurate routes to correct for 

paths with large drift.   

 

3.5 The generation of virtual intra-loop constraints   

Figure 6 shows the relationship between the inter-robot loop 

closures queue and the virtual intra-robot loop closures received 

by individua robot in this experiment.  A valid inter-robot loop 

closure queue is finally determined by nearest neighbour search 

for descriptors and outlier rejection. Subsequently, the pose 

transformation from the keyframe of the vehicle in the first 

adopted loop to the keyframe of the same vehicle in the next loop 

at a certain interval is computed one by one. To avoid the 

timestamp between two key frames is too close, some loops will 

be discarded. During the calculation of the virtual intra-robot 

constraints, all separator poses from other robots are transformed 

to the local coordinate frame according to the latest coordinate 

transformation matrices. The detailed explanation of this transfer 

process can explain why inter-robot constraints are not 

significant for local slam in this experiment. This is because the 

transformation process of this constraint relies on the accuracy of 

multiple variables and the imposed ranges of keyframes can be 

seen to be overlapping.  

 

Figure 6. The conversion of inter-loop closures to virtual intra-

loop closures 

 

3.6 Future development 

In order to improve the flexibility and efficiency of cooperative 

SLAM in complicated environment, we propose to use another 

descriptor that can include more environmental information. 

Shan et al., (2021) uses image-quality high-resolution 3D point 

clouds to obtain an intensity image and encode the ORB feature 

descriptors into a bag-of-words vector. This method is more 

robust and combines the benefits of both the camera and lidar-

based methods. To investigate the robust cooperative mapping in 

urban scenes, we employed the Imaging Lidar to improve the 

effectiveness of inter-robot loop closure detection. Besides, we 

propose to perform feature selection in the LiDAR odometry part 

to improve the efficiency of multi-robot cooperative SLAM. We 

can expect similar positioning accuracy but with a lower 

computational load. Moreover, we will explore cooperative 

mechanisms and conversion algorithms to make the great use of 

inter-robot constraints. Furthermore, the fusion of SLAM with 

human mobility data, obtained through GPS-enabled devices and 

other location-based services, allows for the generation of 

dynamic and precise maps that reflect the ever-changing nature 

of urban spaces (Liu et al., 2021; Liu, Shi, et al., 2022; Liu, Wang, 

et al., 2022; Shi et al., 2022). 

 

 

4. CONCLUSION 

In his paper, we analyse the performance of the single and 

collaborative LiDAR SLAM based on a complex dataset. In 

general, we can find good results for collaborative mapping and 

localization in large urban environments. During the experiment, 

we found that the extent to which inter-robot constraints affect 

the correction of local SLAM is related to various factors, such 

as the confidence level of the constraints and the range of 

keyframes imposed by the constraint. We may use proper task 

allocation between robots and route design strategies to leverage 

the benefits of inter-robot constraints. 
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